Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Ice Is Sliding Toward Edges Off Greenland Ice Sheet

% of readers think this story is Fact. Add your two cents.


Ice on the Greenland Ice Sheet doesn’t just melt. The ice actually slides rapidly across its bed toward the ice sheet’s edges. As a result, because ice motion is from sliding as opposed to ice deformation, ice is being moved to the high-melt marginal zones more rapidly than previously thought.

Neil Humphrey, a University of Wyoming professor of geology and geophysics, and Nathan Maier, a UW geology Ph.D. student from Morristown, N.J., headed a recent research group that discovered that you do not need beds with till or mud, which acts as a lubricant, to have high rates of sliding. Rather, they discovered that it is over hard bedrock where ice slides more rapidly. Additionally, the ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.

View near Kap Kolthoff Kejser Franz Josef Fjord

Credit: Uffe Wilken / Wikimedia Commons

“That’s the kicker. The Greenland Ice Sheet is happily sliding over a surface that theory says it shouldn’t be able to rapidly slide over,” Humphrey says. “What’s important is that, because of this, you get a lot of ice to the oceans or low altitudes where it can melt really fast. It’s like a lump of molasses sliding off the continent. It just doesn’t melt. It slides toward the ocean.”

“Our measurements of sliding-dominated flow over a hard bed in a slow-moving region were quite surprising because people don’t typically associate these regions with high sliding,” Maier adds. “Generally, people associate lots of sliding motion with regions that have soft beds (mud) or exceptionally high-sliding velocities, such as ice streams. Yet, in this relatively boring region, we found the highest fraction of sliding measured to date.”

Neil Humphrey (left), a UW professor of geology and geophysics, and Nathan Maier, a UW geology Ph.D. student, pose on the Greenland Ice Sheet during 2017 field research. The two wrote a paper, titled “Sliding Dominates Slow-Flowing Margin Regions, Greenland Ice Sheet,” that was published July 10 in Science Advances.
 
Credit: Neil Humphrey Photo

Maier was lead author and Humphrey was a co-author of the paper, titled “Sliding Dominates Slow-Flowing Margin Regions, Greenland Ice Sheet,” that was published today (July 10) in Science Advances. The peer-reviewed, multidisciplinary open-access scientific journal includes all areas of science, including the life sciences, physical sciences, social sciences, computer sciences and environmental sciences.

Other contributors to the paper were Joel Harper, an associate professor of geosciences, and Toby Meierbachtol, an assistant professor, both from the University of Montana. The paper represents work conducted on the Greenland Ice Sheet from 2014-16.

The researchers installed 212 tilt sensors within a network of boreholes drilled into the ice bed. The tilt sensors allow for observation of ice deformation and sliding movement. Humphrey uses a large drill he designed, which he describes as “a very large truck washer” that puts out high-pressure steam with a large drill nozzle and hydraulic hose. He says it is “the fastest ice drill in the world” and can drill 5,000 feet into the Greenland Ice Sheet in eight hours.

“Most of our work is truly arcane,” Humphrey says. “We’re boring holes through the ice sheet, but we don’t even collect ice cores.”

Modeling constrained by detailed tilt observations made along the basal interface of the ice suggests that the high sliding is due to a slippery bed, where sparsely spaced bedrock bumps provide limited resistance to sliding. Estimates of sliding speed are typically based on the residual between observed surface velocity and modeled ice deformational velocity.

“We don’t have a good theory for this type of sliding,” Humphrey explains. “But the data from this paper will allow us to work on an improved theory.”

Maier agrees, saying their work should help improve the accuracy of ice sheet models as they try to predict future mass loss from Greenland.

“There has been some debate as to whether ice flow along the edges of Greenland should be considered mostly deformation or mostly sliding,” Maier says. “This has to do with uncertainty of trying to calculate deformation motion using surface measurements alone. Our direct measurements of sliding- dominated motion, along with sliding measurements made by other research teams in Greenland, make a pretty compelling argument that no matter where you go along the edges of Greenland, you are likely to have a lot of sliding.”

Maier says this is important to the future of Greenland because it means the ice sheet can move mass around efficiently and, thus, respond rapidly to a changing climate.

Similarly, Maier says changes in ice motion due to a warming climate also will result in thickening and thinning along the edges of the ice sheet. Because ice can be moved around efficiently due to high rates of sliding, changes in melting can occur rapidly.

The sliding ice does two things, Humphrey says. First, it allows the ice to slide into the ocean and make icebergs, which then float away. Two, the ice slides into lower, warmer climate, where it can melt faster.

While it may sound dire, Humphrey notes the entire Greenland Ice Sheet is 5,000 to 10,000 feet thick.

“In a really big melt year, the ice sheet might melt a few feet. It means Greenland is going to be there another 10,000 years,” Humphrey says. “So, it’s not the catastrophe the media is overhyping.”

Humphrey has been working in Greenland for the past 30 years and says the Greenland Ice Sheet has only melted 10 feet during that time span.

Contacts and sources:

University of Wyoming

Citation: Sliding dominates slow-flowing margin regions, Greenland Ice Sheet.
Nathan Maier, Neil Humphrey, Joel Harper, Toby Meierbachtol. Science Advances, 2019; 5 (7): eaaw5406 DOI: 10.1126/sciadv.aaw5406

 


Source: http://www.ineffableisland.com/2019/07/ice-is-sliding-toward-edges-off.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.