Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Asteroid Mining Not As Far Away As You Might Think

% of readers think this story is Fact. Add your two cents.


Work by a team of University of Adelaide scientists to perfect metal and mineral extraction processes is bringing the possibility of mining the wealth contained within asteroids closer to reality. But science fiction won’t become fact until asteroid mining becomes economically as well as technically viable.

“Asteroids such as Bennu are closer to us than Adelaide is to Alice Springs about 1000 kilometers away in Earth’s near orbit,” says Professor Volker Hessel, Deputy Dean-Research from the University of Adelaide’s Faculty of Engineering, Computer & Mathematical Sciences (ECMS) and Professor in the School of Chemical Engineering.

 

Credit: University of Adelaide

“Advances in space exploration mean that these bodies which contain nickel, cobalt, and platinum as well as water and organic matter, are now within reach.”

Professor Hessel is developing an intensified continuous-flow metal solvent extraction process which is faster and more selective than existing processes and is fine-tuned to the specific raw materials found in asteroids.

“Continuous-flow chemistry is proven technology. The process extracts metal by mixing and separating solvents. Successive passes of the chemicals through the process results in complete extraction of the metals,” he says.

“Asteroid-born metals co-exist in different combinations and concentrations from those found in terrestrial rock, so one of the challenges that the team has is understanding how these may be successfully extracted. This new disruptive technology is needed as traditional technology does not provide the solution.”

The continuous-flow technology is scalable and can operate in zero gravity and a vacuum which makes space mineral extraction a reality. Professor Hessel’s US partner Space Tango is developing expanded flow chemistry capabilities in orbit. On 4 May they launched a mission that included, on board, the first processing lab assessing liquid separation. An array of space-focused companies is eyeing up the vast potential rewards on offer from the trillions of asteroids each worth millions of dollars in raw materials.

“In the same way that colonialists and explorers exploited the resources of the New World about 400 years ago, today’s pioneering asteroid miners are reaching out to exploit riches in space,” says Professor Hessel.

“There are 17 missions currently underway for space resource exploitation. The NASA OSIRIS-Rex mission to Bennu asteroid will return with samples in 2023.

“Continuous-flow chemistry technology must be perfected to use as little water as possible. While launching costs are projected to fall in the mid-term, they will remain a serious point to consider. Instead of needing hundreds of tonnes of water to extract one tonne of metal, development of the technology may mean that less than 10 tonnes are required.

“Many alternative approaches are being investigated such as realigning asteroid orbits to make them more accessible, processing on the Moon, Mars or lower Earth orbit using available water, and processing on asteroids themselves or in the near-Earth orbit.

“Under the umbrella of the University’s ECMS Faculty space theme and our In-Situ Resource Utilisation (ISRU) laboratory we aim to perfect metal extraction technology using continuous-flow chemistry. This is only one piece of our holistic approach to the in-situ resource utilisation puzzle.

“Exploitation of the wealth locked up in asteroids will only become a reality when other disruptive elements come together and it is economically as well as technically viable,” says Professor Hessel.

Work by a team of University of Adelaide scientists to perfect metal and mineral extraction processes is bringing the possibility of mining the wealth contained within asteroids closer to reality. But science fiction won’t become fact until asteroid mining becomes economically as well as technically viable.

“Asteroids such as Bennu are closer to us than Adelaide is to Alice Springs about 1000 kilometres away in Earth’s near orbit,” says Professor Volker Hessel, Deputy Dean-Research from the University of Adelaide’s Faculty of Engineering, Computer & Mathematical Sciences (ECMS) and Professor in the School of Chemical Engineering.

“Advances in space exploration mean that these bodies which contain nickel, cobalt, and platinum as well as water and organic matter, are now within reach.”

Professor Hessel is developing an intensified continuous-flow metal solvent extraction process which is faster and more selective than existing processes and is fine-tuned to the specific raw materials found in asteroids.

“Continuous-flow chemistry is proven technology. The process extracts metal by mixing and separating solvents. Successive passes of the chemicals through the process results in complete extraction of the metals,” he says.

“Asteroid-born metals co-exist in different combinations and concentrations from those found in terrestrial rock, so one of the challenges that the team has is understanding how these may be successfully extracted. This new disruptive technology is needed as traditional technology does not provide the solution.”

The continuous-flow technology is scalable and can operate in zero gravity and a vacuum which makes space mineral extraction a reality. Professor Hessel’s US partner Space Tango is developing expanded flow chemistry capabilities in orbit. On 4 May they launched a mission that included, on board, the first processing lab assessing liquid separation. An array of space-focused companies is eyeing up the vast potential rewards on offer from the trillions of asteroids each worth millions of dollars in raw materials.

“In the same way that colonialists and explorers exploited the resources of the New World about 400 years ago, today’s pioneering asteroid miners are reaching out to exploit riches in space,” says Professor Hessel.

“There are 17 missions currently underway for space resource exploitation. The NASA OSIRIS-Rex mission to Bennu asteroid will return with samples in 2023.

“Continuous-flow chemistry technology must be perfected to use as little water as possible. While launching costs are projected to fall in the mid-term, they will remain a serious point to consider. Instead of needing hundreds of tonnes of water to extract one tonne of metal, development of the technology may mean that less than 10 tonnes are required.

“Many alternative approaches are being investigated such as realigning asteroid orbits to make them more accessible, processing on the Moon, Mars or lower Earth orbit using available water, and processing on asteroids themselves or in the near-Earth orbit.

“Under the umbrella of the University’s ECMS Faculty space theme and our In-Situ Resource Utilisation (ISRU) laboratory we aim to perfect metal extraction technology using continuous-flow chemistry. This is only one piece of our holistic approach to the in-situ resource utilisation puzzle.

“Exploitation of the wealth locked up in asteroids will only become a reality when other disruptive elements come together and it is economically as well as technically viable,” says Professor Hessel.

Contacts and sources:
Professor Volker Hessel 
Professor in the School of Chemical Engineering
The University of Adelaide

Crispin Savage

The University of Adelaide



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 1 comment
    • Howard West

      Water Water Water!!!! IS the most needed thing in space!!! Why, Water has low melting point making easy to melt and can be used to fill thin plastic bags to create safe interplanetary space craft. That same water would be used to create thrust from nuclear rockets! NASA has been looking for Water with most of its missions! But NO LUCK! Don’t make things so complex. If NASA could find abundant water: They would be exploring the solar system with manned craft that are nuclear powered built in space made of ICE WATER .

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.