Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By New Energy And Fuel (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

New Material Separates CO2 From Gases for Recycling

% of readers think this story is Fact. Add your two cents.


Chemists at the University of Bayreuth have developed a material where carbon dioxide (CO2) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for CO2 recycling. The separation process is both energy efficient and cost-effective.

Electron microscopic cross-sectional image of the new hybrid material. It was possible to produce the glass platelets very precisely and, interrupted by spacers, to layer them on top of each other. Image Credit: Martin Rieß, University of Bayreuth. Click image for the largest view.

In the journal Cell Reports Physical Science the researchers present the structure and function of the material.

The “Green Deal,” presented by the European Commission in 2019, calls for the net emissions of greenhouse gases within the EU to be reduced to zero by 2050. This requires innovative processes that can separate and retain CO2 from waste gases and other gas mixtures so that it is not released into the atmosphere.

The material developed at Bayreuth has one fundamental advantage over previous separation processes: It is capable of completely removing CO2 from gas mixtures without chemically binding CO2. These gas mixtures can be waste gases from industrial plants, but also natural gas or biogas.

In all these cases, CO2 accumulates in the cavities of the material solely due to physical interaction. From there, it can be released without great expenditure of energy, to be made available again as a resource for industrial production. Hence, the separation process works, chemically speaking, according to the principle of physical adsorption.

Like a spacious storage tank, the new material can be filled with and emptied of carbon dioxide in an energy-efficient way. In Bayreuth laboratories, it was designed in such a way as to only separate out CO2 and no other gas from the most varied gas mixtures.

Martin Riess M.Sc., first author of the new publication and doctoral researcher at the Inorganic Chemistry I research group at the University of Bayreuth said, “Our research team has succeeded in designing a material that fulfills two tasks at the same time. On the one hand, the physical interactions with CO2 are strong enough to free and retain this greenhouse gas from a gas mixture. On the other hand, however, they are weak enough to allow the release of CO2 from the material with only a small amount of energy.”

The new material is an inorganic-organic hybrid. The chemical basis is clay minerals consisting of hundreds of individual glass platelets. These are only one nanometer thick each, and arranged precisely one above the other. Between the individual glass plates there are organic molecules that act as spacers. Their shape and chemical properties have been selected so that the pore spaces created are optimally tailored to accumulate CO2.

Only carbon dioxide molecules can penetrate into the pore system of the material and be retained there. In contrast, methane, nitrogen, and other exhaust gas components must remain outside due to the size of their molecules. The researchers have used the so-called molecular sieve effect to increase the material’s selectivity for CO2.

They are currently working on the development of a membrane system based on clay minerals, designed to allow the continuous, selective, and energy-efficient separation of CO2 from gas mixtures.

The development of a hybrid material tailor-made for the separation and supply of CO2 was made possible thanks to a special measuring system set up in the Bayreuth laboratories which allows the precise determination of quantities of adsorbed gases and of the selectivity of the adsorbing material. This has enabled industrial processes to be reproduced realistically.

Martin Riess noted, “All criteria relevant to the evaluation of industrial CO2 separation processes have been completely fulfilled by our hybrid material. It can be produced cost-effectively, and stands to make an important contribution to reducing industrial carbon dioxide emissions, but also to the processing of biogas and acidic natural gas.”

The Bayreuth team seems to have accomplished the task of a simple low input method to harvest CO2. The effort to cycle the CO2 out again is also noted as a low energy task. The story isn’t suggesting the material has a short life or a long life either, but there doesn’t seem to be a heat or chemical reaction involved that one would expect to be life limiting. Congratulations are in order and the observation that this material might have quite a wide range of applications as the technology matures.

The post New Material Separates CO2 From Gases for Recycling first appeared on New Energy and Fuel.



Source: https://newenergyandfuel.com/http:/newenergyandfuel/com/2020/11/18/new-material-separates-co2-from-gases-for-recycling/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST


Order by Phone at 888-809-8385 or online at https://www.herbanomic.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)

Immusist Beverage Concentrate - Proprietary blend, formulated to reduce inflammation while hydrating and oxygenating the cells.

Report abuse
Loading...
Loading...

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

MOST RECENT
Load more ...

SignUp

Login

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.