Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By New Energy And Fuel (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Solid State Lithium Metal Battery Design Lasts 6000 Cycles

% of readers think this story is Fact. Add your two cents.


Harvard’s John A. Paulson School of Engineering and Applied Sciences researchers have developed a new lithium metal battery that can be charged and discharged at least 6,000 times. That’s more than any other pouch battery cell – and can be recharged in a matter of minutes. The cycle count equals more than 16 years of daily charge /discharge cycles.

The research not only describes a new way to make solid state batteries with a lithium metal anode but also offers new understanding into the materials used for these potentially revolutionary batteries.

The research report has been published in Nature Materials.

 Xin Li, Associate Professor of Materials Science at SEAS and senior author of the paper said, “Lithium metal anode batteries are considered the holy grail of batteries because they have ten times the capacity of commercial graphite anodes and could drastically increase the driving distance of electric vehicles. Our research is an important step toward more practical solid state batteries for industrial and commercial applications.”

One of the biggest challenges in the design of these batteries is the formation of dendrites on the surface of the anode. These structures grow like roots into the electrolyte and pierce the barrier separating the anode and cathode, causing the battery to short or even catch fire.

Dendrites form when lithium ions move from the cathode to the anode during charging, attaching to the surface of the anode in a process called plating. The plating on the anode creates an uneven, non-homogeneous surface, like plaque on teeth, and allows dendrites to take root.

When discharged, that plaque-like coating needs to be stripped from the anode and when plating is uneven, the stripping process can be slow and result in potholes that induce even more uneven plating in the next charge.

In 2021, Li and his team offered one way to deal with dendrites by designing a multilayer battery that sandwiched different materials of varying stabilities between the anode and cathode. This multilayer, multi-material design prevented the penetration of lithium dendrites not by stopping them altogether, but rather by controlling and containing them.

In this new research, Li and his team stop dendrites from forming by using micron-sized silicon particles in the anode to constrict the lithiation reaction and facilitate homogeneous plating of a thick layer of lithium metal.

In this design, when lithium ions move from the cathode to the anode during charging, the lithiation reaction is constricted at the shallow surface and the ions attach to the surface of the silicon particle but don’t penetrate further.

This is markedly different from the chemistry of liquid lithium ion batteries in which the lithium ions penetrate through deep lithiation reaction and ultimately destroy silicon particles in the anode.

But, in a solid state battery, the ions on the surface of the silicon are constricted and undergo the dynamic process of lithiation to form lithium metal plating around the core of silicon.

Li explained, “In our design, lithium metal gets wrapped around the silicon particle, like a hard chocolate shell around a hazelnut core in a chocolate truffle.” These coated particles create a homogenous surface across which the current density is evenly distributed, preventing the growth of dendrites.

And, because plating and stripping can happen quickly on an even surface, the battery can recharge in only about 10 minutes.

Trialed – licensed

The researchers built a postage stamp-sized pouch cell version of the battery, which is 10 to 20 times larger than the coin cell made in most university labs. The battery retained 80% of its capacity after 6,000 cycles, outperforming other pouch cell batteries on the market today.

The technology has been licensed through Harvard Office of Technology Development to Adden Energy, a Harvard spinoff company co founded by Li and three Harvard alumni.

The company has scaled up the technology to build a smart phone-sized pouch cell battery.

Li and his team also characterized the properties that allow silicon to constrict the diffusion of lithium to facilitate the dynamic process favoring homogeneous plating of thick lithium.

They then defined a unique property descriptor to describe such a process and computed it for all known inorganic materials.

In doing so, the team revealed dozens of other materials that could potentially yield similar performance.

“Previous research had found that other materials, including silver, could serve as good materials at the anode for solid state batteries,” said Li. “Our research explains one possible underlying mechanism of the process and provides a pathway to identify new materials for battery design.”

The research is co-authored by Luhan Ye, Yang Lu, Yichao Wang, and Jianyuan Li. It was supported by the Department of Energy Vehicle Technology Office, the Harvard Climate Change Solutions Fund, and Harvard Data Science Initiative Fund.

***

Today’s really good lithium ion cell will hold up pretty well into about 1000 cycles – or a bit better with good care. This new design is a major upgrade into both solid state and lithium metal. These alone are major improvements if they can be made commercially viable.

The downside is that there will need to be much more lithium needed to fill out the inventory of battery capacity. And right now lithium recycling isn’t setting any great records.

For small devices a 16 year lifespan isn’t likely to be a great marketing point It should make an impact, on say a big item like an EV, but the EV market is already facing a major revolt in battery costs and this tech isn’t suggesting a huge cost reduction.

But its certain there will be a market for this. Just how fast and just how big will be up to consumers more now than in the past. The government incentive and regulations period looks to be peaking. This tech just might help keep the electrification momentum going.

The post Solid State Lithium Metal Battery Design Lasts 6000 Cycles first appeared on New Energy and Fuel.


Source: https://newenergyandfuel.com/http:/newenergyandfuel/com/2024/01/09/solid-state-lithium-metal-battery-design-lasts-6000-cycles/?utm_source=rss&utm_medium=rss&utm_campaign=solid-state-lithium-metal-battery-design-lasts-6000-cycles


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.