Read the story here. Advertise at Before It's News here.
Profile image
Story Views
Last hour:
Last 24 hours:


% of readers think this story is Fact. Add your two cents.

Most black holes have little mass compared to their host galaxy, but a recently discovered black hole grew so quickly the host galaxy couldn’t keep pace.

The discovery has astronomers questioning assumptions about how galaxies develop.

Benny Trakhtenbrot, a researcher at ETH Zurich’s Institute for Astronomy, together with an international team of astrophysicists, was hunting for ancient massive black holes using the 10 meter Keck telescope in Hawaii. Although this kind of observations are routine for them, Trakhtenbrot and the team were surprised by the first black hole they observed.

The data, collected with a new instrument, revealed a giant black hole in an otherwise normal, distant galaxy, called CID-947. Because its light had to travel a very long distance, the scientists were observing it at a period when the universe was less than two billion years old, just 14 percent of its current age (almost 14 billion years have passed since the Big Bang).

An analysis of the data collected in Hawaii revealed that the black hole in CID-947, with nearly 7 billion solar masses, is among the most massive black holes discovered up to now. What surprised researchers in particular was not the black hole’s record mass, but rather the galaxy’s mass.

“The measurements correspond to the mass of a typical galaxy,” says Trakhtenbrot, a postdoctoral fellow working within the Extragalactic Astrophysics research group of Professor Macella Carollo. “We therefore have a gigantic black hole within a normal size galaxy.”

The result was so surprising, that two of the astronomers had to verify the galaxy mass independently. Both came to the same conclusion. The team reports its findings in the current issue of the journal Science.


Most galaxies, including our Milky Way, have a black hole at their center that holds millions to billions of solar masses.

“Black holes are objects that possess such a strong gravitational force that nothing—not even light—can escape. Einstein’s theory of relativity describes how they bend space-time itself,” explains ETH professor Kevin Schawinski, coauthor of the new study.

The existence of black holes can be proven because matter is greatly accelerated by the gravitational force and thus emits particularly high-energy radiation.

Until now, observations have indicated that the greater the number of stars present in the host galaxy, the bigger the black hole.

“This is true for the local universe, which merely reflects the situation in the universe’s recent past,” says Trakhtenbrot.

This link, along with other evidence, led the scientists to assume that the growth of black holes and the formation of stars go hand-in-hand. This is quite reasonable, if a common reservoir of cold gas was responsible for the formation of the stars and the “feeding’” of the black hole at the galaxy’s center, says Trakhtenbrot.

Previous studies suggested the radiation emitted during the growth of the black hole controlled, or even stopped, the creation of stars, as the released energy heated up the gas. The latest results, however, suggest these processes work differently, at least in the early universe.


The distant young black hole observed by Trakhtenbrot and his colleagues had roughly 10 times less mass than its galaxy. In today’s local universe, black holes typically reach a mass of 0.2 to 0.5 percent of their host galaxy’s mass.

“That means this black hole grew much more efficiently than its galaxy—contradicting the models that predicted a hand-in-hand development,” Trakhtenbrot explains.

Although the black hole had reached the end of its growth, stars were still forming, the researchers conclude. Contrary to previous assumptions, the energy and gas flow, propelled by the black hole, did not stop the creation of stars.

The galaxy could continue to grow in the future, but the relationship between the mass of the black hole and that of the stars would remain unusually large. The researchers believe CID-947 could be a precursor of the most extreme, massive systems that we observe in today’s local universe, such as the galaxy NGC 1277 in the constellation of Perseus, some 220 million light years away from our Milky Way.

Source: ETH Zurich

Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!

Order by Phone at 888-809-8385 or online at M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at M - F 9am to 5pm EST

Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)

Report abuse


    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Load more ...




    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.