Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Scientists Use Bacteria to Create Biosynthetic Silk Threads Stronger and More Tensile Than Before

% of readers think this story is Fact. Add your two cents.


Spider silk is among the strongest and toughest materials in the natural world, as strong as some steel alloys with a toughness even greater than bulletproof Kevlar. Spider silk’s unmatched combination of strength and toughness have made this protein-based material desirable for many applications ranging from super thin surgical sutures to projectile resistant clothing. Unfortunately, due to spiders’ territorial and cannibalistic nature, their silk has been impossible to mass produce, so practical applications have yet to materialize.

Scientists have been able to create some forms of synthetic spider silk, but have been unable to engineer a material that included most if not all of the natural silk’s traits.Engineers at Washington University have created bacteria that produce biosynthetic silk that’s as strong as the real thing 

Photo: Christopher Bowen

Until now.

Researchers in the School of Engineering & Applied Science at Washington University in St. Louis have engineered bacteria that produce a biosynthetic spider silk with performance on par with its natural counterparts in all of the important measures. And they’ve discovered something exciting about the possibilities ahead.

The new research, published Aug. 20 in Biomacromolecules, reveals that the tensile strength and toughness of spider silk remains positively correlated with its molecular weight — the bigger the molecule, the stronger the silk — even in synthetic silk with a weight nearly twice that of the previous record-holder.

“People already knew about this correlation, but only with smaller-sized proteins. We found that even at this large size, there is still a very good correlation,” said Fuzhong Zhang, associate professor in the School of Engineering & Applied Science.

 Fuzhong Zhang

Credit:  Washington University in St. Louis

One of the biggest historical challenges creating a biosynthetic spider silk has been creating a large enough protein. The challenge was so big, in fact, it required a whole new approach.

“We started with what others had done, making a genetically repeated sequence,” said Christopher Bowen, a PhD student in Zhang’s lab. The DNA sequence was modeled after the sequence in spiders that is responsible for creating the silk protein. In theory, the more repetitions of the sequence, the bigger the resulting protein.

Biosynthetic silk 
Photo: Christopher Bowen

After the DNA sequence reaches a certain size, however, “the bacteria can’t handle it, they chop the sequence into smaller pieces,” Bowen said. It’s a problem that has been encountered many times in previous efforts. To get around this long-standing obstacle, Bowen and co-authors added a short genetic sequence to the silk DNA that promotes a chemical reaction between the resulting proteins, fusing them together to form an even bigger protein, bigger than has ever been produced and purified before.

“We made proteins basically twice as large as anyone’s been able to make before,” Bowen said. Their silk protein chains are 556 kDa. Previously, the largest biosynthetic spider silk protein was 285 kiloDaltons (kDa), an atomic unit of measurement. Even natural dragline silk proteins tend be around 370 kDa, although there are a few, bigger outliers.

Bowen and co-authors subsequently spun their exceptionally large biosynthetic silk proteins into fibers about a tenth the diameter of a human hair and tested their mechanical properties. This biosynthetic silk is the first to replicate natural spider silk in terms of: tensile strength (the maximum stress needed to break the fiber), toughness (the total energy absorbed by the fiber before breaking), as well as other mechanical parameters such as elastic modulus and extensibility.

Engineers at Washington University have created bacteria that produce biosynthetic silk that’s as strong as the real thing. 
Photo: Christopher Bowen

Going forward, Zhang’s lab is looking to work toward positioning biosynthetic silk fibers to replace some of the myriad of petroleum-based synthetic fibers used across industry.

“We will continue to work on making the process more scalable and economical by making it easier to handle, reducing the amount of chemicals needed, and increasing the robustness and efficiency,” Zhang said.

And the Zhang group also plans to further explore the limits of their new approach. In addition to producing the first biosynthetic silk fibers to fully replicate the performance of natural spider silk, their work strongly suggests that the strength and toughness of these fibers will continue to increase if even larger proteins can be produced.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 96.5 tenured/tenure-track and 28 additional full-time faculty, 1,300 undergraduate students, 1,200 graduate students and 20,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.
This work was supported by a Young Investigator Program from the Air Force Office of Scientific Research, grant no. FA95501510174; an Early Career Faculty grant from NASA’s Space Technology Research Grants Program, grant no. NNX15AU45G; and the National Institutes of Health, grant no. P41EB002520.

Contacts and sources:
Brandie Jefferson

Washington University in St. Louis

Citation: Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk
Christopher H. Bowen, Bin Dai, Cameron J. Sargent, Wenqin Bai, Pranay Ladiwala, Huibao Feng, Wenwen Huang, David L. Kaplan, Jonathan M. Galazka, Fuzhong Zhang.. Biomacromolecules, 2018; DOI: 10.1021/acs.biomac.8b00980


Source: http://www.ineffableisland.com/2018/08/scientists-use-bacteria-to-create.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.