Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Big pterosaurs: big or little wing tips

% of readers think this story is Fact. Add your two cents.


Earlier and below (Fig. 2) we looked at large and giant pterosaur wings comparing them to the largest flying birds, including one of the largest extant flying birds, the stork, Ciconia, and the extinct sheerwater, Pelagornis, the largest bird that ever flew.

FIgure 1. A basal pteranodotid, the most complete Pteranodon, the largest Pteranodon skull matched to the largest Pteranodon post-crania compared to the stork Ciconia and the most complete and the largest Quetzalcoatlus. Note the much reduced distal phalanges in the complete and giant Quetzalcoatlus, distinct from the Pteranodon species.

Today
we’ll look at how the largest Pteranodon (Figs. 1, 4) compares to much larger pterosaurs, like Quetzalcoatlus northropi (Figs. 1, 2) that have vestigial wingtips similar to those of the  much smaller flightless pre-azhdarchid, SOS 2428 (Fig. 3).

Note the tiny three distal phalanges
on the wing of the largest Quetzalcoatlus, distinct from the more typical elongate and robust distal phalangeal proportions on volant pterosaurs of all sizes. Much smaller definitely flightless pterosaurs, like SOS 2428, shrink those distal phalanges, too. That’s the pattern when pterosaurs lose the ability to fly.

Figure 2. A previously published GIF animation. Q. northropi and Q. sp. compared to Ciconia, the stork, and Pelagornis, the extinct gannet, to scale. That long neck and large skull of Quetzalcoatlus would appear to make it top heavy relative to the volant stork, despite the longer wingspan. Pteranodon and other flying pterosaurs do not have such a large skull at the end of such a long neck (Fig. 1). The longer wings of pelagornis show what is typical for a giant volant tetrapod, and Q. sp. comes up short in comparison.Today we’ll compare the wingspan of the largest Quetzalcoatlus to the largest and more typical Pteranodon species (Fig. 2).

Unfortunately
pterosaur workers refuse to consider taxa known to be flightless, like SOS 2428 (Peters 2018). It’s easy to see why they would be flightless (Fig. 3). Scaled to similar snout/vent lengths with a fully volant pterosaur like n42 (BSPG 1911 I 31) the wing length and chord are both much smaller in the flightless form.

Figure 3. Lateral, ventral and dorsal views of the flightless SoS 2428 (Peters 2018) alongside No. 42, a volant sister taxon.

Comparing the largest ornithocheirid,
SMNK PAL 1136, to the largest Pteranodon (chimaera of largest skull with largest post-crania in Fig. 4) shows that large flyers have elongate distal phalanges, distinct from body and wing proportions documented in the largest azhdarchids, like Quetzalcoatlus.

Figure 4. Largest Pteranodon to scale with largest ornithocheirid, SMNS PAL 1136. Note the long distant wing phalanges on both of these giant flyers. This is what pterosaurs evolve to if they want to continue flying. And this is how big they can get and still fly. Giant azhdarchids exceed all the parameters without having elongate wings. 

As the largest Pteranodon and largest ornithocheirid (SMNS PAL 1136)
(Fig. 4) demonstrate, as flying pterosaurs get larger, they retain elongate distal wing phalanges. And big, robust phalanges they are.

By contrast in azhdarchids and pre-azhdarchids
there is a large size bump after n42 (BSPG 1911 I 31) the fourth wing phalanx either disappears (see Microtuban and Jidapterus) or shrinks to a vestige. Then there’s Zhejiangopterus (Fig. 5), with a big pelvis, gracile forelimbs and a giant skull on a very long neck. Just that neck alone creates such a long lever arm that the pterosaur is incapable of maintaining a center of balance over or near the shoulder joints.

Figure 5. There are several specimens of Zhejiangopterus. The two pictured in figure 2 are the two smallest above at left. Also shown is a hypothetical hatchling, 1/8 the size of the largest specimen.

As mentioned earlier, becoming flightless permitted, nay, freed azhdarchid pterosaurs to attain great size. They no longer had to maintain proportions that were flightworthy. Instead they used their shortened strut-like forelimbs to maintain a stable platform in deeper waters. And when they had to move in a hurry, their wings could still provide a tremendous amount of flurry and thrust (Fig. 6) for a speedy getaway.

Figure 6. Quetzalcoatlus running without taking off, using all four limbs for thrust. That long lever arm extending to the snout tip in front of the center of gravity is not balanced in back of what would be the center of lift over the wings 

For the nitpickers out there…
some specimens of Nyctosaurus (UNSM 93000, Fig. 7) also have but three wing phalanges, but they are all robust. The distal one is likely the fourth one because it remains curved. Phalanges 2 and 3 appear to have merged, or one of those was lost. Compare that specimen to a more primitive Nyctosaurus FHSM VP 2148 with four robust wing phalanges.

Figure 5. Cast of the UNSM 93000 specimen of Nyctosaurus. Missing parts are modeled here.

References
Peters D 2018. First flightless pterosaur (not peer-reviewed). PDF online.


Source: https://pterosaurheresies.wordpress.com/2018/09/06/big-pterosaurs-big-or-little-wing-tips/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Humic & Fulvic Liquid Trace Mineral Complex

HerbAnomic’s Humic and Fulvic Liquid Trace Mineral Complex is a revolutionary New Humic and Fulvic Acid Complex designed to support your body at the cellular level. Our product has been thoroughly tested by an ISO/IEC Certified Lab for toxins and Heavy metals as well as for trace mineral content. We KNOW we have NO lead, arsenic, mercury, aluminum etc. in our Formula. This Humic & Fulvic Liquid Trace Mineral complex has high trace levels of naturally occurring Humic and Fulvic Acids as well as high trace levels of Zinc, Iron, Magnesium, Molybdenum, Potassium and more. There is a wide range of up to 70 trace minerals which occur naturally in our Complex at varying levels. We Choose to list the 8 substances which occur in higher trace levels on our supplement panel. We don’t claim a high number of minerals as other Humic and Fulvic Supplements do and leave you to guess which elements you’ll be getting. Order Your Humic Fulvic for Your Family by Clicking on this Link , or the Banner Below.



Our Formula is an exceptional value compared to other Humic Fulvic Minerals because...


It’s OXYGENATED

It Always Tests at 9.5+ pH

Preservative and Chemical Free

Allergen Free

Comes From a Pure, Unpolluted, Organic Source

Is an Excellent Source for Trace Minerals

Is From Whole, Prehisoric Plant Based Origin Material With Ionic Minerals and Constituents

Highly Conductive/Full of Extra Electrons

Is a Full Spectrum Complex


Our Humic and Fulvic Liquid Trace Mineral Complex has Minerals, Amino Acids, Poly Electrolytes, Phytochemicals, Polyphenols, Bioflavonoids and Trace Vitamins included with the Humic and Fulvic Acid. Our Source material is high in these constituents, where other manufacturers use inferior materials.


Try Our Humic and Fulvic Liquid Trace Mineral Complex today. Order Yours Today by Following This Link.

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.