Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last Hour:
Last 24 Hours:
Total:

Can A.I. Detect Fake News: Machine Learning System Aims to Determine If A News Outlet Is Accurate or Biased

% of readers think this story is Fact. Add your two cents.


Lately the fact-checking world has been in a bit of a crisis. Sites like Politifact and Snopes have traditionally focused on specific claims, which is admirable but tedious – by the time they’ve gotten through verifying or debunking a fact, there’s a good chance it’s already traveled across the globe and back again.

Social media companies have also had mixed results limiting the spread of propaganda and misinformation: Facebook plans to have 20,000 human moderators by the end of the year, and is spending many millions developing its own fake-news-detecting algorithms.A machine learning system aims to determine if a news outlet is accurate or biased.

Credit: Public domain
Researchers from MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) and the Qatar Computing Research Institute (QCRI) believe that the best approach is to focus not on the factuality of individual claims, but on the news sources themselves. Using this tack, they’ve demonstrated a new system that uses machine learning to determine if a source is accurate or politically biased.

“If a website has published fake news before, there’s a good chance they’ll do it again,” says postdoctoral associate Ramy Baly, lead author on a new paper about the system. “By automatically scraping data about these sites, the hope is that our system can help figure out which ones are likely to do it in the first place.”

Baly says the system needs only about 150 articles to reliably detect if a news source can be trusted – meaning that an approach like theirs could be used to help stamp out fake-news outlets before the stories spread too widely.

The system is a collaboration between computer scientists at MIT CSAIL and QCRI, which is part of the Hamad Bin Khalifa University in Qatar. Researchers first took data from Media Bias/Fact Check (MBFC), a website with human fact-checkers who analyze the accuracy and biases of more than 2,000 news sites, from MSNBC and Fox News to low-traffic content farms.

They then fed that data to a machine learning algorithm called a Support Vector Machine (SVM) classifier, and programmed it to classify news sites the same way as MBFC. When given a new news outlet, the system was then 65 percent accurate at detecting whether it has a high, low or medium level of “factuality,” and roughly 70 percent accurate at detecting if it is left-leaning, right-leaning or moderate.

The team determined that the most reliable ways to detect both fake news and biased reporting were to look at the common linguistic features across the source’s stories, including sentiment, complexity and structure.

For example, fake-news outlets were found to be more likely to use language that is hyperbolic, subjective, and emotional. In terms of bias, left-leaning outlets were more likely to have language that related to concepts of harm/care and fairness/reciprocity, compared to other qualities such as loyalty, authority and sanctity. (These qualities represent the 5 “moral foundations,” a popular theory in social psychology.)

Co-author Preslav Nakov says that the system also found correlations with an outlet’s Wikipedia page, which it assessed for general length – longer is more credible – as well as target words like “extreme” or “conspiracy theory.” It even found correlations with the text structure of a source’s URLs: those that had lots of special characters and complicated subdirectories, for example, were associated with less reliable sources.

“Since it is much easier to obtain ground truth on sources [than on articles], this method is able to provide direct and accurate predictions regarding the type of content distributed by these sources,” says Sibel Adali, a professor of computer science at Rensselaer Polytechnic Institute who was not involved in the project.

Nakov is quick to caution that the system is still a work-in-progress, and that, even with improvements in accuracy, it would work best in conjunction with traditional fact-checkers.

“If outlets report differently on a particular topic, a site like Politifact could instantly look at our ‘fake news’ scores for those outlets to determine how much validity to give to different perspectives,” says Nakov, a senior scientist at QCRI.

Baly and Nakov co-wrote the new paper with MIT senior research scientist James Glass alongside master’s students Dimitar Alexandrov and Georgi Karadzhov of Sofia University. The team will present the work later this month at the 2018 Empirical Methods in Natural Language Processing (EMNLP) conference in Brussels, Belgium.

The researchers also created a new open-source dataset of more than 1,000 news sources, annotated with factuality and bias scores – the world’s largest database of its kind. As next steps, the team will be exploring whether the English-trained system can be adapted to other languages, as well as to go beyond the traditional left/right bias to explore region-specific biases (like the Muslim World’s division between religious and secular).

“This direction of research can shed light on what untrustworthy websites look like and the kind of content they tend to share, which would be very useful for both web designers and the wider public,” says Andreas Vlachos, a senior lecturer at the University of Cambridge who was not involved in the project.

Nakov says that QCRI also has plans to roll out an app that helps users step out of their political bubbles, responding to specific news items by offering users a collection of articles that span the political spectrum.

“It’s interesting to think about new ways to present the news to people,” says Nakov. “Tools like this could help people give a bit more thought to issues and explore other perspectives that they might not have otherwise considered.”

Contacts and sources:
Adam Conner-Simons

Massachusetts Institute of Technology, CSAIL



Source: http://www.ineffableisland.com/2018/10/can-ai-detect-fake-news-machine.html
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Join our affiliate program and earn extra money by sharing with friends and family or by posting on your social media.


Order by Phone at 888-809-8385 or online at www.mitocopper.com


Get our Free Ebook, "Suppressed Health Secrets"  with  Natural Cures THEY don't want you to know!

APeX - Far superior to colloidal silver! Destroys Viruses, Bacteria, Pathogens with Oxygen plus Silver!

Supreme Fulvic - Nature's most important supplement! Vivid Dreams again!

Ultimate Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Organic Hemp Extract (CBD) - Full Spectrum high CBD (3300mg) hemp extract eases stiff joints, relieves stress and more!
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)


FINAL WARNING!  Diseases are EXPLODING!  Watch this Video about APeX and You'll THROW AWAY Your Colloidal Silver!  APeX destroys Viruses, Bacteria and other Pathogens with the power of Oxygen PLUS Silver!  Nobody else has a product like THIS!   See why the inventor hasn't been sick in 16 years and why you'll never hear about it on the FAKE NEWS!  Get some now and tell your friends about it too so we can reach more people!  


APeX Interview - Superior to Colloidal Silver from Lee Canady on Vimeo.


Learn about APeX Here and Get the 50 Page Report in PDF format.   Call us at 888-809-8385 to order by phone.



Report abuse
Loading...
    Loading...

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 1 comment
    • Just me

      ALL news outlets are biased and propagate false news. Including the White House.

    MOST RECENT
    Loading...
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.