Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By OLED-Info (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Researchers achieve the quenching of antiferromagnets into high resistivity states via electrical or optical pulses

% of readers think this story is Fact. Add your two cents.


Researchers at the Czech Academy of Sciences, Charles University in Prague, ETH Zurich and other universities in Europe recently introduced a method to achieve the quenching of antiferromagnets into high resistivity states by applying either electrical or ultrashort optical pulses. This strategy could open interesting new avenues for the development of spintronic devices based on antiferromagnets.

Antiferromagnetism is a type of magnetism in which parallel but opposing spins occur spontaneously within a material. Antiferromagnets, materials that exhibit antiferromagnetism, have advantageous characteristics that make them particularly promising for fabricating spintronic devices. Due to their ultrafast nature, their insensitivity to external magnetic fields and their lack of magnetic stray fields, antiferromagnets could be particularly desirable for the development of spintronic devices. However, despite their advantages, most simple antiferromagnets have weak readout magnetoresistivity signals. Moreover, so far scientists have been unable to change the magnetic order of antiferromagnets using optical techniques, which could ultimately allow device engineers to exploit these materials’ ultrafast nature.

“Our original motivation was to address a major challenge in the field of spintronics, for which the solution seems out of reach of conventionally used ferromagnets; namely, the lack of a universal switching mechanism to achieve switching by electrical as well as optical pulses in the same device,” said Tomas Jungwirth, one of the researchers involved in the study. “Our antiferromagnetic devices allow for this, and we can now use pulse length from macroscopic millisecond scales all the way down to a single femtosecond-laser pulse.”

In their recent study, Jungwirth and his colleagues were able to overcome a further challenge in the field of spintronics. Specifically, they were able to attain readout signals of the giant-magnetoresistance amplitudes in simple magnetic films, without the need to assemble complex magnetic multilayer structures. The researchers achieved this using CuMnAs antiferromagnetic films.

They were able to fabricate spintronic devices with reversible, reproducible and time-dependent switching capabilities. This ability to switch magnets allows their devices to mimic components of spiking neural networks (SNNs), artificial neural networks that mimic biological neural networks in the brain. This feature of the design introduced by Jungwirth and his colleagues has never been realized using conventional methods that switch magnets by reorienting the magnetization vector from one to another direction over the entire active part of devices.

“Our switching mechanism is fundamentally distinct: The delivered quenching pulses control the level of magnetic domain fragmentation in the device down to a nano-scale, without necessarily changing the mean direction of the magnetic-order vector,” Jungwirth explained. “Remarkably to us, this can be done in an entirely reversible and reproducible way, as we demonstrated in the paper.”

In the future, the new design could enable the development of new and better performing spintronic devices. In their next studies, the researchers plan to investigate the potential of their design for neuromorphic computing applications. In other words, they plan to explore the possibility of using the devices they created to mimic some of the synaptic and neuron-like functionalities of SNNs.

“On a scientific level, we now aim to investigate and explain the physical fundamentals of our new switching mechanism by means of high space and time-resolved microscopies pushed to the atomic and femtosecond limits,” Jungwirth said. “This will help us to optimize the parameters of currently used antiferromagnetic materials or identify new suitable material candidates.”


Source: https://www.spintronics-info.com/researchers-achieve-quenching-antiferromagnets-high-resistivity-states


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.