Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By The Curious Wavefunction (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

The human problems with molecular modeling

% of readers think this story is Fact. Add your two cents.


Molecular modeling and computational chemistry are the neglected stepchildren of pharmaceutical and biotech research. In almost every company, whether large or small, these disciplines are considered “support” disciplines, peripheral to the main line of research and never at the core. At the core instead are synthetic chemistry, biology and pharmacology, with ancillary fields like formulations and process chemistry becoming increasingly important as the path to a drug progresses.

In this post I will explore two contentions:

1. Unless its technical and human problems are addressed, molecular modeling and simulation will remain peripheral instead of core fields in drug discovery.

2. The overriding problem with molecular modeling is the lack of a good fit between tools and problems. If this problem is addressed, molecular modeling stands a real chance of moving from the periphery to, if not the very core, at least close to the core of drug discovery.

There are two kinds of challenges with molecular modeling that practitioners have known for a long time – technical and human. The technical problems are well known; although great progress has been made, we still can’t model the details of biochemical systems very accurately, and even key aspects of these systems like protein motion, water molecules and – in case of approaches like machine learning – lack of adequate benchmarks and datasets continue to thwart the field. 

However, in this piece I will focus on the human problems and explore potential ways of mitigating them. My main contention is that the reason modeling often works so poorly in a pharmaceutical setting is because the incentives of modelers and other scientists are fundamentally misaligned. 

In a nutshell, a modeler has two primary objectives – to make predictions about active, druglike molecules and to validate the models they are using. But that second part is actually a prerequisite for the first – without proper validation, a modeler cannot know if the exact problem space they are applying their models to is actually a valid application of their techniques. For proper validation, two things are necessary:

1. That the synthetic chemist actually makes the molecules they are suggesting.

2. That the synthetic chemistry does not make molecules which they aren’t suggesting.

In reality the synthetic chemist who takes up the modelers’ suggestions has little to no interest in model validation. As anyone who has done modeling knows, when a modeler suggests ten compounds to a synthetic chemist, the synthetic chemist would typically pick 2 or 5 out of those 10. In addition, the synthetic chemist might pick 5 other compounds which the modeler never recommended. The modeler typically also has no control and authority over ordering compounds themselves.

The end result of this patchwork implementation of the modeler’s predictions is that they never knows whether their model really worked. Negative data is especially a problem, since synthetic chemists are almost never going to make molecules that the modeler thinks will be inactive. You are therefore left with a scenario in which neither the synthetic chemist nor the modeler is satisfied with the utility of the models. No wonder the modeler is relegated in the back of the room during project discussions.

There is another fundamental problem which the modeler faces, a problem which is actually more broadly applicable to drug discovery scientists. In one sense, not just modeling but all of drug discovery including devices, assays, reagents and models can be considered as a glorious application of tools. Tools only work if they are suited to the problem. If a practitioners thinks the tool will be unsuited, they need to be able to say so and decline using the tool. Unfortunately, incentive structures in organizations are rarely set up for employees to say “no”. Hearing this is often regarded as an admission of defeat or an unwillingness to help out. This is a big mistake. Modelers in particular should always be rewarded if they decline to use modeling and can gives good reasons for doing so. As it stands, because they are expected to be “useful”, most modelers end up indiscriminately using their tools on problems, no matter what the quality of the data or the probability of success is. This means that quite often they are simply using the wrong tool for the wrong problem. Add to this the aforementioned unwillingness of synthetic chemists to validate the models, and it’s little surprise that modeling so often fails to have an impact and is relegated to the periphery.

How does one address this issue? In my opinion, the issue can be mitigated to a significant extent if modelers know something about the system they are modeling and the synthesis which will yield the molecules they are predicting. If a modeler can give sound reasons based on assays and synthesis – perhaps the protein construct they are using for docking is different from one in the assay, perhaps the benchmarks are inadequate or perhaps the compounds they are suggesting won’t be amenable to easy synthesis because of a weird ring system – other scientists are more likely to both take their suggestions more seriously as well as respect their unwillingness to use modeling for a particular problem. The overriding philosophy that a modeler utilizes should be captured not in the question, “What’s the best modeling tool for this problem?” but “Is modeling the right tool for this problem?”. So, the first thing a modeler should know is whether modeling would even work, but if not, he or she will go a long way in gaining the respect of their organization if they can say at least a few intelligent things about alternative experimental approaches or the experimental data. There is no excuse for a computational chemist to not be a chemist in the first place.

More significantly, my opinion is that this mismatch will not be addressed until modelers themselves are not in the driver’s seat, until they can ensure themselves that their predictions are tested in their entirety. Unfortunately there’s little control modelers have in organization over testing their models; much of it simply depends on how much the synthetic chemists trust the modelers, a relationship driven as much by personality and experience as modeling success. Even today, modelers can’t usually simply their compounds for synthesis, either to internal or external teams.

Fortunately there are two very significant recent developments that promise modelers a degree of control and validation that is unprecedented. One is the availability of cheap CROs like WuXi and Enamine which can make many of the compounds that are predicted by modeling. These CROs have driven the cost down so significantly that even negative can now importantly be tested. In general, the big advantage of external CROs relative to internal chemists is that you can dictate what the external CROs should and shouldn’t make – they won’t make compounds which you don’t recommend and they will make every compound that you do; the whims of personal relationships won’t make a difference in a fee-for-service structure.

More tantalizingly, there have been a few success stories now of fully computationally-driven pipelines, most notably Nimbus and Morphic Therapeutics and, more recently, Silicon Therapeutics. When I say “fully computationally driven” I don’t mean that synthetic chemists don’t have any input – the inaccuracy of computational techniques precludes fully automated molecule selection from a model – what I mean is that every compound is a modeled compound. In these organizations the relationship between modeling and other disciplines is reversed, computation is front and center – at the core – and it’s synthetic chemistry and biology in the form of CROs that are at the periphery. These organizations can ensure that every single prediction made by modelers is tested and made, or conversely, that no molecule that is made and tested fails to go through the computational pipeline. At the very least, you can then keep a detailed bookkeeping record of how designed molecules perform and therefore validate the models; at best, as some of these organizations showed, you can discover viable druglike leads and development candidates.

Computational chemistry and modeling have come a long way, but they have a long way to go both in terms of technical and organizational challenges. Even if the technical challenges are solved, the human challenges are significant and will hobble the computation has on drug discovery. Unless incentive structures are aligned the fields will continue to have poor impact and be at the periphery. The only way for them to progress is for computation to be in the driver’s seat and for computational chemists to be as informed as possible. Fortunately with the advent of the commodification of synthesis and the increased funding and interest in computationally driven drug pipelines, it seems there may be a chance for us to find out how well these techniques work after all.



Source: http://wavefunction.fieldofscience.com/2021/04/the-human-problems-with-molecular.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)

Immusist Beverage Concentrate - Proprietary blend, formulated to reduce inflammation while hydrating and oxygenating the cells.

Report abuse
Loading...

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.