Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Bradley J Roth
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Cerenkov Luminescence Imaging: Physics Principles and Potential Applications in Biomedical Sciences

% of readers think this story is Fact. Add your two cents.


When a particle travels faster than the speed of light, it emits Cerenkov radiation. This phenomenon has resulted in new medical imaging applications, as described in a 2017 review paper by Esther Ciarrocchi and Nicola Belcari (Cerenkov Luminescence Imaging: Physics Principles and Potential Applications in Biomedical Sciences, EJNMMI Physics, Volume 4, Article 14). This is an open access article, so you can read it for free.

Russ Hobbie and I don’t discuss Cerenkov Luminescence Imaging in Intermediate Physics for Medicine and Biology, but you can learn a lot about it using the physics we do discuss. For example, can particles  travel faster than the speed of light? They can’t travel faster than the speed of light in a vacuum, but they can travel faster than the speed of light in a material such as water or tissue where light is slowed and the medium has an index of refraction. Below is a new homework problem, in which we consider electrons emitted in tissue by beta decay of the isotope iodine-131, used in many medical applications.

Problem 9 ¼. The end point kinetic energy (see Fig. 17.8) for beta decay of 131I is 606 keV, and tissue has an index of refraction of 1.4. Do any of the emitted electrons have a speed faster than the speed of light in the tissue? To determine this speed, use Eq. 14.1. Because the electrons move near the speed of light, to determine their speed as a function of their kinetic energy use a result from special relativity, Eq. 17.1.

For those who don’t have IPMB at your side (shame on you!), Eq. 14.1 is cn = c/n, where cn is the speed of light in the medium, c is the speed of light in a vacuum (3 × 108 m/s), and n is the index of refraction, and Eq. 17.1 is T + mc2 = mc2/√(1 − v2/c2), where v is the speed of the particle, T is its kinetic energy, and mc2 is the rest mass of an electron expressed as energy (511 keV).

If you solved this problem correctly, you found that some of the more energetic electrons emitted during beta decay of 131I do travel faster than the speed of light in tissue.

Cerenkov radiation is emitted at an angle θ with respect to the direction that the particle is moving. This distribution of light is characteristic of a shock wave, and is similar to the distribution of sound in a sonic boom made by a plane when it flies faster than the speed of sound. The new problem below requires the reader to calculate θ.

Problem 9 ½. The drawing below shows a particle moving to the right faster than the speed of light in the medium. The position of the particle at several instants is indicated by the purple dots. The location of light emitted by the particle at each position is shown by the black circles. The light adds to form a conical wave front, shown by the green lines. 

(a) Use the red right triangle to calculate the angle θ as a function of the particle speed, v, and the index of refraction, n

(b) Compute the value of θ for the fastest electrons emitted by beta decay of 131I in tissue.

The number of photons emitted tends to be greatest at short wavelengths, so Cerenkov radiation often has a blue tinge. However, readers of IPMB learned in Chapter 14 that the spectrum of radiation can look different when viewed as a function of frequency (or energy) rather than as a function of wavelength. Below is a new problem to explore this effect.

Problem 9 ¾. The number of photons dN emitted with a wavelength between λ and λ + is approximately dN = C/λ2, where C is a constant.

(a) Sketch a plot of dN/ versus λ. Don’t worry about the scale of the axes (in other words, don’t worry about the value of C); just make the plot qualitatively correct. 

(b) Use methods similar to those introduced in Section 14.8 to determine the number of photons emitted with an energy between E and E + dE. Don’t worry about constant factors, just determine how dN/dE varies with E

(c) Sketch a plot of dN/dE versus E. Again, just make the plot qualitatively correct.

If you solved part (c) correctly, you should have drawn a plot with a flat line, because dN/dE is independent of E. Of course, there must be some limits to this result, otherwise the particle would emit an infinite amount of energy when integrated over all photon energies. See Ciarrocchi and Belcari’s review for an explanation.

Perhaps the most interesting part of Ciarrocchi and Belcari’s article is their discussion of biomedical applications. You can use Cerenkov radiation to image beta emitters like 131I, positron emitters like 18F used in positron emission tomography, and high-energy protons required for proton therapy.

To learn more about Cerenkov radiation, watch this video by Don Lincoln. Enjoy!

How does Cerenkov radiation work?

https://www.youtube.com/watch?v=Yjx0BSXa0Ks


Source: http://hobbieroth.blogspot.com/2021/06/cerenkov-luminescence-imaging-physics.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.