Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Bradley J Roth
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Electroreception

% of readers think this story is Fact. Add your two cents.


Suppose you’re reading Homework Problem 4 in Chapter 8 of Intermediate Physics for Medicine and Biology, and you run across the phrase “If a shark can detect an electric field strength of 0.5 μV m−1…”. What’s your first reaction? Probably you suspect a typo (it isn’t). An electric field with a strength of 0.5 μV m−1 is tiny. By comparison, you need a field of about 10 V m−1 to stimulate a neuron in the brain. How can a shark detect a field of only 0.0000005 V m−1? The answer makes for an interesting story.

Some of the first studies of electroreception—the ability of some animals, such as sharks, to sense weak electric fields—were performed by a biophysicist at Woods Hole Oceanographic Institute named Adrianus Kalmijn. He observed dogfish sharks while sitting in an inflatable rubber raft in the ten-foot deep water of the Atlantic Ocean near Martha’s Vineyard. Kalmijn attracted the sharks using liquified herring placed on the ocean floor. On either side of the herring was a pair of electrodes that could be used to pass current. The dogfish were initially attracted by the smell of the herring, and “began frantically searching over the sand, apparently trying to locate the odor source” (Kalmijn, 1977). But when current was turned on, the dogfish stopped searching for the herring and “viciously attacked” the electrodes! Using experiments like these, Kalmijn was able to characterize how sharks respond to electric fields. 

Spiny dogfish (Squalus acanthias) at the Josephine Marie shipwreck, Stellwagen National Marine Laboratory. From Wikipedia.

Sharks detect weak electric fields using sensory organs called the ampullae of Lorenzini. The ampullae consist of highly conducting jelly-filled tubes about 30 cm long (a little more than a foot). The shark detects the voltage across the length of the tube, and then places that entire voltage difference across a single cell membrane. An electric field of 0.5 μV m−1 multiplied by a distance of 0.3 m gives you a voltage of 0.15 μV. There’s an extra factor of three arising from the distortion of the field by the shark, so you end up with a transmembrane voltage of about half a microvolt.

A membrane voltage of 0.5 μV is minuscule. The typical resting membrane voltage of a cell is approximately 70 mV, so half a microvolt is less than ten parts per million. How can such a small voltage change be detected? To answer this question, William Pickard, an engineer at Washington University in St. Louis, assumed that this membrane voltage does not cause a neuron to fire (it’s far too weak for that), but instead modulates its spontaneous firing rate. The neuron normally operates in a regime where this rate is very sensitive to the membrane voltage, which has the effect of magnifying a small change in voltage into a large change in rate (Pickard, 1988).

Many ampullae of Lorenzini influence a single neuron. Their summation has the effect of averaging out any background noise. The size of thermal voltage fluctuations across a neuron’s membrane were estimated by Yale physicist Robert Adair to be about 1 μV (Adair, 1991), which is twice as large as the membrane voltage produced by the smallest electric field a shark can detect. Integrating the signal over hundreds of ampullae suppresses these fluctuations, allowing the system to pick a signal out of the thermal background. This sensory mechanism has been honed by evolution to be about as sensitive as it can be without detecting the constant roar of random noise. 

To learn more about electroreception, see Section 9.9 of Intermediate Physics for Medicine and Biology.

  1. Kalmijn, A. J. (1977) “The electric and magnetic sense of sharks, skates, and rays.” Oceanus Volume 20, Pages 45-52.
  2. Pickard, W. F. (1988) “A model for the acute electrosensitivity of cartilaginous fishes.” IEEE Transactions on Biomedical Engineering Volume 35, Pages 243-249. 
  3. Adair, R. K. (1991) “Constraints on biological effects of weak extremely low-frequency electromagnetic fields.” Physical Review A Volume 43, Pages 1039-1048. 

The ampullae of Lorenzini. https://www.youtube.com/watch?v=9S8a5hSc22s


Source: http://hobbieroth.blogspot.com/2021/11/electroreception.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.