Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By SophiaAdams007
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Atmospheric Waves Awareness: An Explainer

% of readers think this story is Fact. Add your two cents.


Yesterday, the Venus Express mission announced the observation of planetary waves in Venus’ polar atmosphere. Following is an explainer on planetary waves, gravity waves, and atmospheric tides. –Ed.

Atmospheres are full of waves. Some, like sound waves, are abundantly clear to our ears (especially near a college dormitory on a Saturday night). Some of the most powerful waves propagating through atmospheres, however, are silent and invisible. Even worse is the fact that these poor waves are under-appreciated by everyone from Google to that one engineering colleague who thought that I made them up. These atmospheric waves are big, having wavelengths ranging from meters and kilometers (gravity waves) to thousands of kilometers (planetary waves). Their effects on the climate system and energy budget of a planet are both tremendous and varied: Europe’s temperate climate (at least, compared to the USA’s East Coast), the replenishment of the ozone hole, and the hexagon at Saturn’s pole are all caused by these waves. Today I’ll go over two types of waves that are critically important on Earth and other planets: gravity waves and planetary waves.

 

A time lapse of gravity waves in Iowa passing through an atmosphere. Credit: Iowa Environmental Mesonet Webcam

NASA (photo ID ISS036-E-11843)

Gravity waves in the atmosphere

In this astronaut photo taken from the ISS, gravity waves are seen off the Lake Superior coast in Ontario, Canada, looking much like ripples on a pond. These are most likely caused by the instabilities from warm land air flowing over cool lake air. Note that the gravity waves are perpendicular to the flow.

WeatherFlow

Gravity wave clouds

Gravity waves may produce clouds that are visible from the ground by expanding and then compressing air, which we see as clouds. These clouds are perpendicular to the flow.

The video above shows a simulation of gravity waves in the atmosphere from NCAR at the surface (10 seconds in) and at 100 km (at 40 seconds), as seen by changes in the meridional or north/south wind speed.

It’s important to clarify that atmospheric or oceanic gravity waves are not to be confused with gravitational waves, the outward propagating perturbations in spacetime that are associated with cool physics graphics and, apparently, any and all Google searches on either subject. Unlike gravitational waves, gravity waves are compressional waves in an atmosphere. They occur when a parcel of air gets bumped to aregion of different density, and the force of gravity pushes it back. This results in a propagating oscillation which we perceive as a wave. Most of the time you can’t actually see gravity waves, because a passing wave compresses and then decompresses the air, much like a wave moving on a slinky. Compressed air looks the same to human eyes as decompressed air, so a better analogy might be an invisible slinky. This is the same mechanism as sound wave propagation in the air. Sometimes we get lucky, and the compression of air results in cloud formation, because compressing air that is relatively humid results in condensation. But more often, especially in dry areas, the process of wave propagation is invisible. Clear-air turbulence, the bumps we feel on planes, is often the result of gravity waves breaking.

Planetary waves are different from gravity waves. Planetary waves are propagated by the rotational forces of the Earth, rather than gravity. Planetary waves occur when a parcel of air gets bumped to a region with a different rotational speed and the Coriolis force pushes it back. As such, gravity waves can propagate vertically and horizontally, whereas planetary waves only propagate along meridians of longitude.

Just like ocean waves, gravity waves and planetary waves don’t transport air across long distances. Rather, they push air molecules together and then apart. This results in little net movement but a lot of transfer of energy, much in the way that participating in ‘the Wave’ at a baseball game results in mild exercise and good cheer but at the end, everyone is still in the seat they paid for. This energy transport plays an important role in global weather, because gravity waves and planetary waves are able to push energy to regions of the atmosphere that don’t receive a lot of solar or thermal energy.

So what do these things do? Planetary waves are responsible for most weather on Earth. At mid-latitudes (between the subtropics and polar regions), a Rossby wave manifests itself as meanders in the jet stream, which then spin off to form the high and low pressure systems that we experience as weather. In the tropics, equatorial waves control precipitation by interacting with the convection cells over the oceans known as the Walker Circulation. This produces something known as the Madden Julien Oscillation, which can either bring bountiful rains or wreak havoc on East Africa and Indonesia. In either a cruel twist of fate or an argument for international agriculture markets, the result is reversed for each region so that bountiful conditions in East Africa mean ruinous conditions for Indonesia, and vice versa.

Upwards moving gravity waves have fewer direct consequences on humans, but grow more important in the upper atmosphere. As they move away from the surface, the amplitude of the waves must grow to conserve energy in the thinning air. These waves grow in amplitude with increasing altitude above the surface until they “break”, just like waves at the beach. This wave breaking releases large amounts of energy into the atmosphere. In particular, it drives the circulation of the stratosphere. This controls everything from where ozone is located — while it is produced in the tropics, it ends up at the poles — to whether or not the polar vortex stays together. In a sense, gravity waves allow the bottom of the atmosphere to communicate with the top, by transmitting momentum and energy from the surface without moving air masses. 

From Wikipedia user Jensob

Earth’s thermal atmospheric tide

Earth’s thermal atmospheric tide, showing variations in temperature and wind at 100 km (around the mesopause, between the mesosphere and thermosphere). The scale is in ‘anomaly’ units, or how many degrees the temperature field is changing from the mean.

Other types of atmospheric waves exist, and any world with a dense atmosphere such as Jupiter or Titan is home to waves (sorry asteroids, no fun for you). You’ve heard of tides in the ocean, right? Atmospheres have tides, too. Atmospheric tides are a type of wave caused by either gravitational forces or solar heating which, like ocean tides, have a signal that occurs daily as well as possibly twice or four times daily. On Earth, atmospheric tides are seen far away from the surface in what we call the middle and upper atmosphere, defined as the mesosphere and above, above an altitude of 50 kilometers. We observe atmospheric tides as diurnal disturbances in pressure fields, caused by thermal forcing rather than gravitational pull from celestial bodies. Thermal atmospheric tides are well theorized, studied, modeled, and measured on other planets and moons. From data taken by the Huygens probe, we have measured atmospheric tides in Titan’s upper atmosphere, and from the Mars Climate Sounder, we have observed Mars’ semidiurnal tide. These waves can cause large variations in atmospheric density in regions where engineers would typically rely on atmospheric braking to slow down vehicles. Understanding the range and frequency of these perturbations is then critically important to preventing your spacecraft from crashing into the ground.

 

One last type of wave that normally remains the domain of action movies: shock waves. Shock waves only occur naturally on Earth when comets or airplanes break the sound barrier, and rarely during explosions, but we may be seeing them on exoplanet HD80606b. Though physical confirmation is limited to using climate models, extreme heat swings are theorized to result from a shock wave traveling around the planet.

NASA / JPL-Caltech / J. Langton (UC Santa Cruz)

The atmosphere of HD 80606b

Atmospheric simulation of the exoplanet HD 80606b suggests a shock wave of storms is responsible for temperatures that vary hundreds of degrees within a few hours. (Read more here.) An animated version can be viewed here.

Oh, and those examples from the beginning of the article? The bend in the jet stream that keeps Europe more temperate than the US is caused by a planetary wave called a Rossby wave, the replenishment of ozone to the poles is caused by gravity wave-driven circulation, and the hexagon at Saturn’s pole is caused by a standing planetary wave.



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Humic & Fulvic Liquid Trace Mineral Complex

HerbAnomic’s Humic and Fulvic Liquid Trace Mineral Complex is a revolutionary New Humic and Fulvic Acid Complex designed to support your body at the cellular level. Our product has been thoroughly tested by an ISO/IEC Certified Lab for toxins and Heavy metals as well as for trace mineral content. We KNOW we have NO lead, arsenic, mercury, aluminum etc. in our Formula. This Humic & Fulvic Liquid Trace Mineral complex has high trace levels of naturally occurring Humic and Fulvic Acids as well as high trace levels of Zinc, Iron, Magnesium, Molybdenum, Potassium and more. There is a wide range of up to 70 trace minerals which occur naturally in our Complex at varying levels. We Choose to list the 8 substances which occur in higher trace levels on our supplement panel. We don’t claim a high number of minerals as other Humic and Fulvic Supplements do and leave you to guess which elements you’ll be getting. Order Your Humic Fulvic for Your Family by Clicking on this Link , or the Banner Below.



Our Formula is an exceptional value compared to other Humic Fulvic Minerals because...


It’s OXYGENATED

It Always Tests at 9.5+ pH

Preservative and Chemical Free

Allergen Free

Comes From a Pure, Unpolluted, Organic Source

Is an Excellent Source for Trace Minerals

Is From Whole, Prehisoric Plant Based Origin Material With Ionic Minerals and Constituents

Highly Conductive/Full of Extra Electrons

Is a Full Spectrum Complex


Our Humic and Fulvic Liquid Trace Mineral Complex has Minerals, Amino Acids, Poly Electrolytes, Phytochemicals, Polyphenols, Bioflavonoids and Trace Vitamins included with the Humic and Fulvic Acid. Our Source material is high in these constituents, where other manufacturers use inferior materials.


Try Our Humic and Fulvic Liquid Trace Mineral Complex today. Order Yours Today by Following This Link.

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.