Read the story here. Advertise at Before It's News here.
Profile image
By Universe Today (Reporter)
Contributor profile | More stories
Story Views
Last hour:
Last 24 hours:

Researchers Develop a new Framework for Searching for Biosignatures

% of readers think this story is Fact. Add your two cents.

Planning ahead is something astronomy and space exploration excels at.  Decadal surveys and years of engineering effort for missions give the field a much longer time horizon than many others.  In the near future, scientists know there will be plenty of opportunities to search for biosignatures everywhere from nearby ocean worlds (i.e. Titan) to far away potentially habitable exoplanets.  But it’s not clear what those biosignatures would look like.  After all, currently there is only Earth’s biosphere to study, and it would be unfortunate to miss hints of another just because it didn’t look like those found on Earth.   Now a team led by researchers at the Santa Fe Institute (SFI) have come up with a framework that could help scientists look for biosignatures that might be completely different from those found on Earth.

That framework relies on stoichiometry. A common feature of high school chemistry classes, stoichiometry is the study of chemical ratios.  There are some obvious stoichiometric ratios on Earth that are clearly formed by life as we know it. Generalizing those ratios to be applicable anywhere was the focus of the paper from SFI.  There were three main principles that collectively make up the new framework.  

UT video discussing biosignatures.

The first principle is that stoichiometric values change with the cell size of individual cells.  For example, as bacteria grow bigger the concentration of RNA increases while the concentration of individual proteins decreases.  When those cells die, their size would help to determine what concentration of molecules are released into the environment.

Environmental distribution is also impacted by the second principle – that the number of cells in an environment follows a power law distribution in relation to their size.  For example, there are most likely many more small cells than there are large ones, according to the simplest power law distribution curve.  This size ratio, along with the stoichiometries associated with those different sizes then led to the third principle.

Example of a power law distribution. Lower values on the x-axis (sizes of particles in this case) lead to large quantities (y-axis).
Credit – Hay Kranen / PD / Wikipedia

Applying that stoichiometric principle one step further leads to a result that can be applied to biospheres more generally.   In this case, the size of a given particle is a determining factor of its ratio with the fluid that it is surrounded by.

Let’s continue using RNA and proteins as an example. RNA is an order of magnitude bigger than a protein.  It is also more prevalent in larger cells, according to the first principle.  Larger cells, however, are less prevalent in the environment, according to the second principle.  Therefore, in a biologically active system, proteins, which are smaller, are more likely to have a higher concentration in a surrounding fluid than RNA, which is larger, would.  Hence, the third principle that its size determines a particle’s concentration in a surrounding liquid.

UT video discussing the possibility of life on Titan.

The immediate application of this framework is studying ocean worlds, like Titan or Enceladus, where there are likely liquid bodies that could have concentrations of biological molecules inside of them.  Unfortunately, for now, there are no systems that can accurately measure particle size that could launch on any missions to these worlds.  But that doesn’t mean there won’t be in the future. So the potential for using this framework now requires a bit more engineering expertise to develop such a system.  And it’s already clear how good the astronomy and space exploration community are at that.

Learn More:
SFI – Origins of life researchers develop a new ecological biosignature
Journal of Mathematical Biology – Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications
Astrobiology – Exoplanet Biosignatures: A Framework for Their Assessment
UT – What’ll It Take to Find Life? Searching the Universe for Biosignatures

Lead Image:
Artist conception of life on another planet
Credit: NASA

The post Researchers Develop a new Framework for Searching for Biosignatures appeared first on Universe Today.


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!

Order by Phone at 888-809-8385 or online at M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at M - F 9am to 5pm EST

Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)

Report abuse


    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Load more ...




    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.