Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Universe Today (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Astronomers see an Accretion Disk Where Planets are About to Form

% of readers think this story is Fact. Add your two cents.


Planet formation is notoriously difficult to study.  Not only does the process take millions of years, making it impossible to observe in real time, there are myriad factors that play into it, making it difficult to distinguish cause and effect.  What we do know is that planets form from features known as protoplanetary disks, which are made up of gas and dust surrounding young stars.  And now a team using ALMA have found a star system that has a protoplanetary disk and enough variability to help them nail down some details of how exactly the process of planet formation works.

The research is described in two new papers in The Astrophysical Journal.  They describe the star system Elias 2-27, which is located about 400 light years from Earth in Ophiuchus, the Serpent Bearer.  It has attracted the attention of astronomers for the last 5 years, first being studied in 2016 when it revealed a pinwheel of dust surrounding the star.

Visualization from NASA of planets forming in a protoplanetary disk.
Credit – NASA

Usually protoplanetary disks don’t take the shape of a pinwheel, which is more commonly found in galactic formations such as the Pinwheel Galaxy.  Researchers speculated that the two pinwheel arms visible around the star were caused by gravitational instabilities, which could also contribute to planetary formation processes.  But they needed further data to prove their idea.

That is where the new papers come in.  Data that was collected over the last 5 years proved the existence of gravitational instabilities, but also found a few things that weren’t caught in the first round of data.  It appears there may have been more material accreting to the disk itself, causing more gravitational chaos. More surprisingly, some parts of the protoplanetary disk were much taller than others.

This type of “vertical asymmetry” had never been observed before in a protoplanetary disk, and allowed the researchers to take a step forward in one of the computational hurdles that block the path to fully understanding planetary formation.  Computational members of the team had predicted that gravitational instabilities might cause the huge pillars of matter that appear to tower over the disk.  Those towers also open up the possibility of calculating the actual quantity of material present in the disk itself – a measurement that has eluded planetary scientists so far.  

“Knowing the amount of mass present in planet-forming disks allows us to determine the amount of material available for the formation of planetary systems, and to better understand the process by which they form.” said Venedetta Veronesi, lead author of one of the papers and a graduate student at the University of Milan.  

Map of Elias 2-27 system showing why causes of gravitational instabilities are important in causing planetary formation.
Credit – ALMA (ESO / NAOJ / NRAO) / T. Penque-Carreño (Universidad de Chile), B. Saxton (NRAO)

Even with the possibility of finally being able to calculate a protoplanetary disk’s size, there is still a lot of work to be done to fully flesh out the entire planetary formation process.  Luckily, there are plenty more star systems out there to study, and some of them undoubtedly have planets at every stage of that formation process.  With tools like ALMA, scientists will continue searching for them, and help draw an even more complete picture of where planets come from.

Learn More:
NRAO – Study of Young Chaotic Star System Reveals Planet Formation Secrets
UT – How Was the Solar System Formed? – The Nebular Hypothesis
UT – Planets Form in Just a Few Hundred Thousand Years

Lead Image:
Different images of the Elias 2-27 star system showing dust (blue) and various gases (red & yellow).
Credit – ALMA (ESO / NAOJ / NRAO) / T. Paneque-Carreño (Universidad de Chile), B. Saxton (NRAO)

The post Astronomers see an Accretion Disk Where Planets are About to Form appeared first on Universe Today.


Source: https://www.universetoday.com/151719/astronomers-see-an-accretion-disk-where-planets-are-about-to-form/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.