Astronomers Try to Directly Observe Epsilon Eridani b. No Luck. Maybe Webb Can Find it?
Back in the year 2000, Epsilon Eridani b was discovered. It is a Jupiter-like exoplanet 10.5 light years away but it has taken decades of observations to learn more about the planet. One thing that remains a mystery is it’s orbit which, until recently has been unknown. There has never been a direct image of the planet either, so now, it’s the turn of JWST to see what it can do.
The concept of exoplanets has been around for a few decades now but the first confirmed discovery occurred in 1992. Astronomers at the Arecibo Observatory discovered a number of Earth-mass planets orbiting around the pulsar PSR B1257+12. Since then, over 5,000 planets have been discovered around other star systems. Astronomers use a number of Studying them once they have been confirmed requires more direct study.
One such exoplanet is known as Epsilon Eridani b which also goes by the name AEgir. Exoplanets are named after their host star (in this case Epsilon Eridani) and the letter ‘b’ designates that it was the first exoplanet discovered around that star. The next to be discovered would be ‘c’ and so on although in the case of Epsilon Eridani it is the only planet. It is thought to orbit around the star at a distance of 3.5 astronomical units (where 1 AU is the average distance between the Sun and Earth) and takes about 7.6 years to complete one orbit.
One area of exoplanet study that has been lacking over recent years is the study of the surface and atmospheric conditions, in particular a study into their potential habitability. Cold exoplanets seem to have received the least study due to their faint appearance in the mid-infrared wavelength. Due to the properties of these cold planets, direct imaging techniques are required and must employ high contrast processes. To date, no instrument has been capable of delivering.
The crux of the challenge is that the cold exoplanets have no intrinsic energy source and only re-use the radiation from the host star. Their luminosity is based upon their size and distance from host star but usually the radiation is at the same wavelength as the emission from the star. To address this challenge, a paper has been published in ‘Astronomy & Astrophysics’ journal by a team led by C. Tschudi from the Institute for Particle Physics and Astrophysics in Switzerland.
The paper provides an insight into high contrast observations of Epsilon Eridani taken in 20198 and 2020 using the VLT (Very Large Telescope). Using the SPHERE instrument (Spectro-Polarimetric High-contrast Exoplanet Research) as part of the ongoing RefPlanets programme, the team were able to use polarising technology to search for signals from the planet.
Unfortunately the team were unable to successfully detect Epsilon Eridani b despite a total exposure time of 38.5 hours spread over 12 nights. This was however, useful at understanding the limitations of the instrumentation. What next then? Well it looks like we have to wait for a next generation of infrared sensitive instruments to peer deeper into the system. The James Webb telescope is a fine example of such a device and, once it turns its sights onto Epsilon Eridani maybe the mysteries will finally be resolved.
Source : SPHERE RefPlanets: Search for ? Eridani b and warm dust
The post Astronomers Try to Directly Observe Epsilon Eridani b. No Luck. Maybe Webb Can Find it? appeared first on Universe Today.
Source: https://www.universetoday.com/166975/astronomers-try-to-directly-observe-epsilon-eridani-b-no-luck-maybe-webb-can-find-it/
Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.
"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
LION'S MANE PRODUCT
Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules
Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.
Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.
