Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Harnessing the Hum of Fluorescent Lights To Make Computing More Efficient

% of readers think this story is Fact. Add your two cents.


The property that makes fluorescent lights buzz could power a new generation of more efficient computing devices that store data with magnetic fields, rather than electricity.

A team led by University of Michigan researchers has developed a material that’s at least twice as “magnetostrictive” and far less costly than other materials in its class. In addition to computing, it could also lead to better magnetic sensors for medical and security devices.

Magnetostriction, which causes the buzz of fluorescent lights and electrical transformers, occurs when a material’s shape and magnetic field are linked—that is, a change in shape causes a change in magnetic field. The property could be key to a new generation of computing devices called magnetoelectrics.

 

Credit: University of Michigan 
Magnetoelectric chips could make everything from massive data centers to cell phones far more energy efficient, slashing the electricity requirements of the world’s computing infrastructure.

Made of a combination of iron and gallium, the material is detailed in a paper published May 12 in Nature Communication. The team is led by U-M materials science and engineering professor John Heron and includes researchers from Intel; Cornell University; University of California, Berkeley; University of Wisconsin; Purdue University and elsewhere.

Magnetoelectric devices use magnetic fields instead of electricity to store the digital ones and zeros of binary data. Tiny pulses of electricity cause them to expand or contract slightly, flipping their magnetic field from positive to negative or vice versa. Because they don’t require a steady stream of electricity, as today’s chips do, they use a fraction of the energy.

“A key to making magnetoelectric devices work is finding materials whose electrical and magnetic properties are linked.” Heron said. “And more magnetostriction means that a chip can do the same job with less energy.”
Cheaper magnetoelectric devices with a tenfold improvement

Most of today’s magnetostrictive materials use rare-earth elements, which are too scarce and costly to be used in the quantities needed for computing devices. But Heron’s team has found a way to coax high levels of magnetostriction from inexpensive iron and gallium.

Ordinarily, explains Heron, the magnetostriction of iron-gallium alloy increases as more gallium is added. But those increases level off and eventually begin to fall as the higher amounts of gallium begin to form an ordered atomic structure.

So the research team used a process called low-temperature molecular-beam epitaxy to essentially freeze atoms in place, preventing them from forming an ordered structure as more gallium was added. This way, Heron and his team were able to double the amount of gallium in the material, netting a tenfold increase in magnetostriction compared to unmodified iron-gallium alloys.

“Low-temperature molecular-beam epitaxy is an extremely useful technique—it’s a little bit like spray painting with individual atoms,” Heron said. “And ‘spray painting’ the material onto a surface that deforms slightly when a voltage is applied also made it easy to test its magnetostrictive properties.”
Researchers are working with Intel’s MESO program

The magnetoelectric devices made in the study are several microns in size—large by computing standards. But the researchers are working with Intel to find ways to shrink them to a more useful size that will be compatible with the company’s magnetoelectric spin-orbit device (or MESO) program, one goal of which is to push magnetoelectric devices into the mainstream.

“Intel is great at scaling things and at the nuts and bolts of making a technology actually work at the super-small scale of a computer chip,” Heron said. “They’re very invested in this project and we’re meeting with them regularly to get feedback and ideas on how to ramp up this technology to make it useful in the computer chips that they call MESO.”

While a device that uses the material is likely decades away, Heron’s lab has filed for patent protection through the U-M Office of Technology Transfer.

The paper is titled “Engineering new limits to magnetostriction through metastability in iron-gallium alloys.” The research is supported by IMRA America and the National Science Foundation (grant numbers NNCI-1542081, EEC-1160504 DMR-1719875 and DMR-1539918).

Other researchers on the paper include U-M associate professor of materials science and engineering Emmanouil Kioupakis; U-M assistant professor of materials science and engineering Robert Hovden; and U-M graduate student research assistants Peter Meisenheimer and Suk Hyun Sung.

Contacts and sources:
Nicole Casal Moore
University of Michigan

Publication: Engineering new limits to magnetostriction through metastability in iron-gallium alloys.
P. B. Meisenheimer, R. A. Steinhardt, S. H. Sung, L. D. Williams, S. Zhuang, M. E. Nowakowski, S. Novakov, M. M. Torunbalci, B. Prasad, C. J. Zollner, Z. Wang, N. M. Dawley, J. Schubert, A. H. Hunter, S. Manipatruni, D. E. Nikonov, I. A. Young, L. Q. Chen, J. Bokor, S. A. Bhave, R. Ramesh, J.-M. Hu, E. Kioupakis, R. Hovden, D. G. Schlom, J. T. Heron. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-22793-x

 

 


Source: http://www.ineffableisland.com/2021/05/harnessing-hum-of-fluorescent-lights-to.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.