Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Getting Ready for the Big One: 10,000 Year Solar Storm A $2.6 Trillion Event, FEMA Adds Space Weather To Daily Briefings

% of readers think this story is Fact. Add your two cents.


Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications by generating geomagnetic storms

The specter of a geomagnetic solar storm with the ferocity to disrupt communications satellites, knock out GPS systems, shut down air travel and quench lights, computers and telephones in millions of homes for days, months or even years has yet to grip the public as a panic-inducing possibility.

But it is a scenario that space scientists, global insurance corporations and government agencies from the Department of Homeland Security (DHS) to NASA to the White House Office of Science and Technology Policy (OSTP) take seriously, calling it a “low probability but high-impact event” that merits a substantial push on several fronts: research, forecasting and mitigation strategy.

Artist illustration of events on the sun changing the conditions in Near-Earth space.

Image Credit: NASA

 

Space Weather Experts Gather

At a recent conference in Washington, D.C. that drew space weather specialists from academia, the federal government, the military and private industry, Louis Lanzerotti, distinguished research professor at NJIT’s Center for Solar-Terrestrial Research, summed up the implications of a massive, well-timed solar storm for today’s technology-based, hyper-connected global society:

“Since the development of the electrical telegraph in the 1840s, space weather processes have affected the design, implementation and operation of many engineered systems, at first on Earth and now in space,” noted Lanzerotti, a panelist at the conference. “As the complexity of such systems increases, as new technologies are invented and deployed, and as humans have ventured beyond Earth’s surface, both human-built systems and humans themselves become more susceptible to the effects of Earth’s space environment.”

By gathering data from numerous observatories, scientists can create models and explore what-if scenarios about what would happen near Earth due to a given CME. Watch the video to learn more about what scientists can see in these models and see a recreation of the 1859 Carrington Event.

Credits: NASA/Bridgman/Duberstein

In addition to disrupting communications and energy grids, what is broadly known as space weather – powerful bursts of electromagnetic radiation, energetic charged particles and magnetized plasma – has the potential to corrode water and sewer pipelines, to erase historical data stored in computer memory, to undermine military and security operations and to harm astronauts traveling in space.

The symposium, “Space Weather Science and Applications: Research for Today, Training for Tomorrow,” sponsored by the Universities Space Research Association (USRA) and the Space Policy Institute at George Washington University, focused on the growing urgency for both basic scientific research and the development of practical applications in the field.

To measure the strength of a geomagnetic storm, scientists measure something called Kp index, which measures the rate of change of magnetic fields near Earth. The Kp index scale goes from 1 to 9.
Image Credit: NOAA
 
“Once systems start to fail, (the outages) could cascade in ways we can’t even conceive,” said Daniel Baker, director of the Laboratory for Atmospheric and Space Physics at the University of Colorado-Boulder and also a panelist, who recommends increasing support for the development of engineering systems and devices capable of protecting Earth’s infrastructure.

Trillion Dollar Recovery

In a 2013 report, Lloyd’s of London, the insurance market, put the population at risk of a massive storm at “between 20-40 million with durations up to 1-2 years,” depending “largely on the availability of spare replacement transformers.” The cost of such a recovery would range between $600 billion and $2.6 trillion.

The symposium followed on the heels of a conference late last year, “Space Weather: Understanding Potential Impacts and Building Resilience,” convened in Washington, D.C. under the auspices of the Executive Office of the President of the United States and also attended by scientists and engineers from academia and industry, as well as policymakers and elected officials. At that time, the OSTP laid out a multi-part action plan to address, as Lanzerotti put it, “civil societal issues related to all aspects of space weather.”

In an op-ed piece that followed, Lanzerotti, who was also panelist at that conference, called the federal plan “impressive for its analyses and coverage of the measurements, data, and models that will be required to ensure security under space weather events of all types–from huge geomagnetic storm-produced telluric currents initiated by coronal mass ejections to solar radio-produced outages of GPS receivers to radiation effects by magnetosphere, solar and galactic radiation to satellite drag effects from Earth’s atmosphere and ionosphere.”

These areas are the focus of NJIT’s Center for Solar-Terrestrial Research, which has a variety of instruments in space and on the ground for observing and recording space weather, including the world’s largest solar optical telescope at Big Bear Solar Observatory, a solar radio telescope array in Owens Valley, instruments across Antarctica and aboard spacecraft in the Van Allen radiation belts.

 
An aurora on March 8, 2012 shimmering over snow-covered mountains in Faskrudsfjordur, Iceland a result of a geomagnetic storm. 
 
Image courtesy of Jónína Óskarsdóttir

At the recent symposium, Tamara Dickinson, the principal assistant director for environment and energy at the OSTP, described recent minor storms that had caused disruption: a blackout in Sweden during which NASA also detected anomalies in deep space missions and several years later, the interruption of flight-control systems, again in Sweden, that halted air traffic.

Setting Benchmarks to Assess Risks to Critical Infrastructure

Dickinson said the government is “at a “fundamental turning point” in its approach to space weather planning and prepared to “take decisive action to address this risk.”

Ralph Stoffler, the director of weather, deputy chief of staff for operations at U.S. Air Force headquarters in Washington, said the Air Force was currently expanding its network of sensors to monitor space weather, including placing them on all of its satellites.

“We need data to support particular military operations,” Stoffler said, adding that the Air Force relies on GPS for missions such as piloting remote aircraft in Afghanistan from the U.S. “If we can predict space weather, we can have other operations in place or delay.”

The Federal Emergency Management Agency (FEMA) has recently added space weather to its daily operations briefings. “We know there is a gap in our ability to assess vulnerability and consequences,” said Jack Anderson, a senior analyst at DHS’s National Protection and Programs Directorate, adding that while there is currently no scale for predicting the magnitude of a storm as exists for hurricanes, for example, “we need to develop that at FEMA.”

William Lapenta, director of the National Centers for Environmental Prediction at the National Oceanic and Atmospheric Administration (NOAA) said his agency’s goal was to track solar storms “from sun to mud,” to predict where conditions following a coronal mass ejection, for example, would be most intense in the ionosphere and on Earth in the form of underground electrical currents, and to calculate impacts on a variety of systems.

On Jan. 28, 2014, NASA’s newly-launched Interface Region Imaging Spectrograph, or IRIS, observed its strongest solar flare to date.

Credits: NASA/IRIS/SDO/Goddard Space Flight Center
 

One of the near-term challenges for policymakers will be to set benchmarks for assessing the vulnerability of various technology systems and establishing thresholds that would trigger protective or recovery responses, said William Murtagh, the assistant director for the space weather, energy and environment division at the OSTP. There are currently working groups focused on these benchmark amid efforts to reach out to other countries to establish international protocols for aviation conditions, mitigation strategies and data sharing, among other areas.

“We do not fully understand those upper boundaries, but we need to … once we understand how big these storms are we can develop trigger points,” he said, adding that the Nuclear Regulatory Commission was interested in the “10,000-year storm – that’s what they need to know.”

“The technological and biological impacts of severe space weather events are now firmly in the federal government’s sights,” noted Andrew Gerrard, director of NJIT’s Center for Solar-Terrestrial Research. “All things being equal, increased research funding from the represented federal agencies will further bolster the incorporation of ‘space weather’ into our daily lives. Such development will enable the solar-terrestrial community to, for the first time, see a solar storm, track its approach, and prepare accordingly.”

Space weather models combined with real time observations help scientists track CMEs. These images were produced from a model known as ENLIL named after the Sumerian storm god. It shows the journey of a CME on March 5, 2013, as it moved toward Mars.


Credits: NASA/Goddard/SWRC/CCMC

Even the biggest solar flares are not powerful enough to physically destroy Earth.

This is not to say that space weather can’t affect our planet. The explosive heat of a solar flare can’t make it all the way to our globe, but electromagnetic radiation and energetic particles certainly can. Solar flares can temporarily alter the upper atmosphere creating disruptions with signal transmission from, say, a GPS satellite to Earth causing it to be off by many yards. Another phenomenon produced by the sun could be even more disruptive. Known as a coronal mass ejection (CME), these solar explosions propel bursts of particles and electromagnetic fluctuations into Earth’s atmosphere. Those fluctuations could induce electric fluctuations at ground level that could blow out transformers in power grids. The CME’s particles can also collide with crucial electronics onboard a satellite and disrupt its systems.

This movie shows a massive solar flare from October 2003, captured by the SOHO satellite. Note the burst of high-speed particles after the flare creating a snowstorm effect. The stellar flare that Swift  detected from a star system called II Pegasi was millions of times more powerful.

Credit: NASA-ESA/SOHO/EIT

Had the sun flared like II Pegasi, these hard X-rays would have overwhelmed the Earth’s protective atmosphere, leading to significant climate change and mass extinction. Ironically, one theory posits that stellar particle outbursts are needed to condition dust to form into planets and perhaps life. The Swift observation demonstrates that such outbursts do occur.

 

Contacts and sources: 
Tanya Klein 
New Jersey Institute of Technology (NJIT)


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.