Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

How Planets Form Controls Elements Essential for Life

% of readers think this story is Fact. Add your two cents.


The prospects for life on a given planet depend not only on where it forms but also how, according to Rice University scientists.

Planets like Earth that orbit within a solar system’s Goldilocks zone, with conditions supporting liquid water and a rich atmosphere, are more likely to harbor life. As it turns out, how that planet came together also determines whether it captured and retained certain volatile elements and compounds, including nitrogen, carbon and water, that give rise to life.

Nitrogen-bearing, Earth-like planets can be formed if their feedstock material grows quickly to around moon- and Mars-sized planetary embryos before separating into core-mantle-crust-atmosphere, according to Rice University scientists. If metal-silicate differentiation is faster than the growth of planetary embryo-sized bodies, then solid reservoirs fail to retain much nitrogen and planets growing from such feedstock become extremely nitrogen-poor

Illustration by Amrita P. Vyas/Rice University

In a study published in Nature Geoscience, Rice graduate student and lead author Damanveer Grewal and Professor Rajdeep Dasgupta show the competition between the time it takes for material to accrete into a protoplanet and the time the protoplanet takes to separate into its distinct layers — a metallic core, a shell of silicate mantle and an atmospheric envelope in a process called planetary differentiation — is critical in determining what volatile elements the rocky planet retains.

Using nitrogen as proxy for volatiles, the researchers showed most of the nitrogen escapes into the atmosphere of protoplanets during differentiation. This nitrogen is subsequently lost to space as the protoplanet either cools down or collides with other protoplanets or cosmic bodies during the next stage of its growth.

This process depletes nitrogen in the atmosphere and mantle of rocky planets, but if the metallic core retains enough, it could still be a significant source of nitrogen during the formation of Earth-like planets.

Dasgupta’s high-pressure lab at Rice captured protoplanetary differentiation in action to show the affinity of nitrogen toward metallic cores.

“We simulated high pressure-temperature conditions by subjecting a mixture of nitrogen-bearing metal and silicate powders to nearly 30,000 times the atmospheric pressure and heating them beyond their melting points,” Grewal said. “Small metallic blobs embedded in the silicate glasses of the recovered samples were the respective analogs of protoplanetary cores and mantles.”

Using this experimental data, the researchers modeled the thermodynamic relationships to show how nitrogen distributes between the atmosphere, molten silicate and core.

“We realized that fractionation of nitrogen between all these reservoirs is very sensitive to the size of the body,” Grewal said. “Using this idea, we could calculate how nitrogen would have separated between different reservoirs of protoplanetary bodies through time to finally build a habitable planet like Earth.”

Their theory suggests that feedstock materials for Earth grew quickly to around moon- and Mars-sized planetary embryos before they completed the process of differentiating into the familiar metal-silicate-gas vapor arrangement.

In general, they estimate the embryos formed within 1-2 million years of the beginning of the solar system, far sooner than the time it took for them to completely differentiate. If the rate of differentiation was faster than the rate of accretion for these embryos, the rocky planets forming from them could not have accreted enough nitrogen, and likely other volatiles, critical to developing conditions that support life.

“Our calculations show that forming an Earth-size planet via planetary embryos that grew extremely quickly before undergoing metal-silicate differentiation sets a unique pathway to satisfy Earth’s nitrogen budget,” said Dasgupta, the principal investigator of CLEVER Planets, a NASA-funded collaborative project exploring how life-essential elements might have come together on rocky planets in our solar system or on distant, rocky exoplanets.

“This work shows there’s much greater affinity of nitrogen toward core-forming metallic liquid than previously thought,” he said.

The study follows earlier works, one showing how the impact by a moon-forming body could have given Earth much of its volatile content, and another suggesting that the planet gained more of its nitrogen from local sources in the solar system than once believed.

In the latter study, Grewal said, “We showed that protoplanets growing in both inner and outer regions of the solar system accreted nitrogen, and Earth sourced its nitrogen by accreting protoplanets from both of these regions. However, it was unknown as to how the nitrogen budget of Earth was established.”

“We are making a big claim that will go beyond just the topic of the origin of volatile elements and nitrogen, and will impact a cross-section of the scientific community interested in planet formation and growth,” Dasgupta said.
 
Rice undergraduate intern Taylor Hough and research intern Alexandra Farnell, then a student at St. John’s School in Houston and now an undergraduate at Dartmouth College, are co-authors of the study.

NASA grants, including one via the FINESST program, and a Lodieska Stockbridge Vaughn Fellowship at Rice supported the research.

Read the paper at https://dx.doi.org/10.1038/s41561-021-00733-0.

Contacts and sources:
Jeff Falk

Rice University

 

 



Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)

Immusist Beverage Concentrate - Proprietary blend, formulated to reduce inflammation while hydrating and oxygenating the cells.

Report abuse
Loading...

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

MOST RECENT
Load more ...

SignUp

Login

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.